ENGG1330 Computer Programming I

Assignment 3

Test cases to help you check your program.

You can check your program according to the following test cases.

Please note that we will add "END" command at the end of the checker program so that the program will end the while loop in the main() function.

We will call the <code>InsertNode</code> function in ascending order of the node ID. The following input is the same as the running example used in the specification.

Input 1	(Run the executable)
	InsertNode 0 Library Building
	InsertNode 1 Hui_Oi_Chow_Science_Building
	InsertNode 2 University_Street
	InsertNode 3 Kadoorie Biological Sciences Building
	InsertNode 4 Haking Wong Building
	InsertNode 5 Chow_Yei_Ching_Building
Output 1	(No screen output, the nodes are inserted into the graph.)

We will call the <code>InsertNode</code> function in any random order of the node ID.

Input 2	(Run the executable)
	InsertNode 1 Hui_Oi_Chow_Science_Building
	InsertNode 5 Chow Yei Ching Building
	InsertNode 0 Library_Building
	InsertNode 3 Kadoorie_Biological_Sciences_Building
	InsertNode 2 University Street
	InsertNode 4 Haking_Wong_Building
Output 2	(No screen output, the nodes are inserted into the graph.)

We will call the <code>InsertNode</code> function with node ID not starting from 0.

Input 3	(Run the executable)
	InsertNode 10 Hui Oi Chow Science Building
	InsertNode 22 Chow Yei Ching Building
	InsertNode 32 Library Building
	InsertNode 25 Kadoorie Biological Sciences Building
	InsertNode 11 University Street
	InsertNode 9 Haking_Wong_Building
Output 3	(No screen output, the nodes are inserted into the graph.)

We will call the InsertNode function with duplicate node ID, the node will not be inserted into the graph. The InsertNode function will output "ID exists.". The program should continue to process any upcoming commands after displaying the error message.

Input 4	(Run the executable)
	InsertNode 0 Library_Building
	InsertNode 1 Hui_Oi_Chow_Science_Building
	InsertNode 2 University_Street
	InsertNode 3 Kadoorie_Biological_Sciences_Building
	InsertNode 4 Haking_Wong_Building
	InsertNode 5 Chow_Yei_Ching_Building
	InsertNode 5 Main_Building
Output 4	ID exists.

- Note that in the above test case the graph is built for the first 6 calls of InsertNode function.
- The program is still active to receive upcoming commands.

We will call the InsertEdge(x, y) function with both x and y exist in the graph.

Input 5	Assume that we continue with the inputs of test case 1.
	InsertEdge 0 1
	InsertEdge 1 0
	InsertEdge 1 2
	InsertEdge 2 1
	InsertEdge 0 3
	InsertEdge 3 0
	InsertEdge 2 4
	InsertEdge 4 2
	InsertEdge 3 4
	InsertEdge 4 3
	InsertEdge 4 5
	InsertEdge 5 4
Output 5	(No screen output, the edges are inserted into the graph.)

We will call the InsertEdge (x, y) function with either x or y, or both does not exists in the graph. InsertEdge (x, y) should output "No such node." once on screen.

Input 6	Assume that we continue with the inputs of test case 1 except END.
	InsertEdge 100 1
Output 6	No such node.
Input 7	Assume that we continue with the inputs of test case 1.
	InsertEdge 1 100
	END
Output 7	No such node.
Input 8	Assume that we continue with the inputs of test case 1.
	InsertEdge 100 100
	END
Output 8	No such node.

We will call the InsertEdge(x, y) function with duplicate edge, and the duplicated one will not be inserted into graph. In this case, InsertEdge function will output "Edge exists."

Input 9	Assume that we continue with the inputs of test case 5.	
	InsertEdge 0 1	
Output 9	Edge exists.	
Input 10	Assume that we continue with the inputs of test case 5.	
	InsertEdge 4 3	
Output 10	Edge exists.	

We will call the CommonNeighbor (x, y) function where node x and y have common neighbors. If there are more than one common neighbors, output them in ascending order of the node ID, line by line.

Input 11	Assume that we continue with the inputs of test case 5.
	InsertEdge 1 3
	InsertEdge 3 1
	CommonNeighbor 2 3
Output 11	1 Hui Oi Chow Science Building
	4 Haking_Wong_Building

We will call the CommonNeighbor (x, y) function where node x and y do not have common neighbors. The function outputs "No common neighbor.".

Input 12	Assume that we continue with the inputs of test case 5.
	CommonNeighbor 1 5
Output 12	No common neighbor.
Input 13	Assume that we continue with the inputs of test case 5.
	InsertNode 6 University_Hall
	CommonNeighbor 6 1
Output 13	No common neighbor.
Input 14	Assume that we continue with the inputs of test case 5.
	InsertNode 6 University_Hall
	InsertNode 7 Clinical_Pathology_Building
	CommonNeighbor 6 7
Output 14	No common neighbor.

-	
Input 15	Assume that we continue with the inputs of test case 5.
	CommonNeighbor 0 0
Output 15	1 Hui_Oi_Chow_Science_Building
-	3 Kadoorie_Biological_Sciences_Building
Input 16	Assume that we continue with the inputs of test case 5.
	InsertNode 6 University Hall
	CommonNeighbor 6 6
Output 16	No common neighbor.

We will call the CommonNeighbor (x, y) function where node x and y are the same.

We will call the CommonNeighbor (x, y) function with x or y or both does not exists in the graph. CommonNeighbor (x, y) should output "No such node." once.

Input 17	Assume that we continue with the inputs of test case 1.
Output 17	No such node
June 10	Accurate that we continue with the inputs of test area 1
input 18	Assume that we continue with the inputs of test case 1.
	CommonNeighbor 0 100
Output 18	No such node.
Input 19	Assume that we continue with the inputs of test case 1.
	CommonNeighbor 100 100
Output 19	No such node.

We will call the ShortestPath(x, y) function where node x and y have a path to print. If there are more than one shortest paths, output any one of them.

Input 20	Assume that we continue with the inputs of test case 5.
	ShortestPath 0 4
Output 20	0 Library_Building
	3 Kadoorie_Biological_Sciences_Building
	4 Haking_Wong_Building
Input 21	Assume that we continue with the inputs of test case 5.
	ShortestPath 1 5
Output 21	1 Hui Oi Chow Science Building
-	2 University_Street
	4 Haking_Wong_Building
	5 Chow_Yei_Ching_Building
Input 22	Assume that we continue with the inputs of test case 5.
	ShortestPath 5 0
Output 22	5 Chow_Yei_Ching_Building
-	4 Haking_Wong_Building
	3 Kadoorie_Biological_Sciences_Building
	0 Library Building

We will call the <code>ShortestPath(x, y)</code> function where node x and y are not connected in the graph (i.e., there are no path to reach from x to y in the graph.). In this case, <code>ShortestPath(x, y)</code> outputs "No path found.".

Input 23	Assume that we continue with the inputs of test case 5.
	InsertNode 6 University Hall
	ShortestPath 0 6
Output 23	No path found.
Input 24	Assume that we continue with the inputs of test case 5.
	InsertNode 7 Clinical Pathology Building
	InsertNode 8 Faculty of Medicine Building
	InsertEdge 7 8
	InsertEdge 8 7
	ShortestPath 8 0
Output 24	No path found.
Input 25	Assume that we continue with the inputs of test case 5.
	InsertNode 7 Clinical_Pathology_Building
	InsertNode 8 Faculty_of_Medicine_Building
	InsertEdge 7 8
	InsertEdge 8 7
	InsertEdge 3 8
	ShortestPath 7 0
Output 25	No path found.
Input 26	Assume that we continue with the inputs of test case 5.
(say, if we	InsertNode 7 Clinical_Pathology_Building
have a one	InsertNode 8 Faculty_of_Medicine_Building
way shuttle	InsertEdge 7 8
from KBS to	InsertEdge 8 7
Medicine	InsertEdge 3 8
building)	ShortestPath 0 /
Output 26	0 Library_Building
	3 Kadoorie_Biological_Sciences_Building
	8 Faculty_of_Medicine_Building
	7 Clinical_Pathology_Building
Input 27	Assume that we continue with the inputs of test case 5.
	InsertNode 7 Clinical_Pathology_Building
	ShortestPath 7 0
Output 27	No path found.
We will call the ShortestPath (x, y) function where node x and y are the same node.	
Input 28	Assume that we continue with the inputs of test case 5.
	ShortestPath 0 0
Output 28	U Library_Building
Input 29	Assume that we continue with the inputs of test case 5.
	ShortestPath 4 4
Output 29	4 Haking_wong_Bullaing
input 30	Assume that we continue with the inputs of test case 5.
	InsertNode 6 University_Hall
	SnortestPath 6 6
Output 30	o University_Hall

Dear Students.

We wish you enjoy this assignment. Please feel free to let our student TAs / Kit know if you face any difficulties when working on this assignment. We are happy to help you ⁽ⁱ⁾. We wish you enjoy learning programming technologies and tools in this course!

Best regards,

Kit and Dirk

-- END --